УΔK 574.55:574.524

DOI: 10.35567/1999-4508-2017-1-7

БИОЛОГИЧЕСКАЯ ПРОДУКТИВНОСТЬ ВЕЛИКИХ ОЗЕР РОССИИ: СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ И НАТУРНЫХ НАБЛЮДЕНИЙ*

© 2017 г. В.В. Бульон

ФГБУ «Зоологический институт Российской академии наук», Санкт-Петербург, Россия

Ключевые слова: водная экосистема, Ладожское озеро, Онежское озеро, Байкал, биотические потоки, факторы среды, моделирование, прогноз биологической продуктивности, качество воды.

В.В. Бульон

Представлены результаты анализа масс-балансовой модели, имитирующей биотические потоки энергии в экосистемах великих озер России — Ладоги, Онеги и Байкала. Спрогнозированы средняя за сезон биомасса и годовая продукция первичных продуцентов, редуцентов и консументов, включая рыб. Дана оценка допустимого вылова рыб. Показания модели сопоставлены с результатами натурных наблюдений. Актуальность исследования великих озер России с привлечением масс-балансовой модели обусловлена тем, что Онежское и Ладожское озера являются крупнейшими в Европе, а Байкал — самым большим в мире водоемом по запасу пресной воды. Уста-

новление трофического статуса названных озер имеет первостепенное значение для оценки качества воды и в целях прогнозирования их общей биологической продуктивности, рыбопродуктивности и допустимого вылова рыб, что возможно только при использовании балансово-энергетического подхода, основанного на знании закономерностей передачи органического вещества и энергии через трофические звенья экосистемы.

На основании количественных связей между ключевыми биотическими и абиотическими компонентами водной экосистемы, обобщенных в форме масс-балансовой модели, составлен прогноз биологической продуктивности озер. Результаты проверки модели по эмпирическим данным показали, что она обладает достаточно высокой прогностической точностью и пригодна для составления биотических балансов озерных экосистем. С учетом специфики региональных условий модель может стать хорошим инструментом реконструкции недостающих данных и экспертной оценки трофического состояния экосистем и, что важно, взаимопроверки надежности эмпирических и предсказанных моделью данных.

 ^{*} Работа выполнена при частичной поддержке ОБН № 01201351192
и РФФИ № 14-04-00207

Одна из главных задач современной гидробиологии – прогнозирование реакции водных экосистем на изменение факторов внешней среды. В настоящее время накоплено достаточно много знаний о механизме функционирования водных экосистем. Эти знания нуждаются в обобщении, которое может быть выполнено в виде имитационной масс-балансовой модели, описывающей биотические процессы в водоеме и степень влияния на них факторов среды при строгом соблюдении закона сохранения энергии.

Предложенная в настоящей работе модель универсальна по отношению к водоемам озерного типа, поэтому она была использована для оценки биологической продуктивности великих озер России, к которым относятся Ладожское и Онежское озера и Байкал. Актуальность исследования этих озер с привлечением масс-балансовой модели обусловлена тем, что первые два озера являются крупнейшими в Европе, а Байкал — самым большим в мире водоемом по запасам пресной воды. Установление трофического статуса этих озер имеет первостепенное значение для оценки качества воды и прогнозирования их общей биологической продуктивности, рыбопродуктивности и допустимого вылова рыб, что возможно только при использовании балансово-энергетического подхода, основанного на знании закономерностей передачи органического вещества и энергии через трофические звенья экосистемы [1, 2].

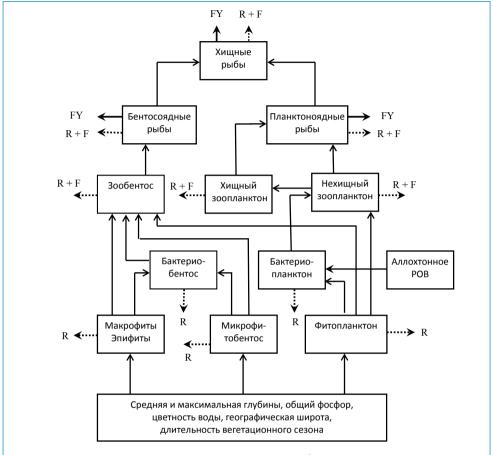
Цель работы – на основании количественных связей между ключевыми биотическими и абиотическими компонентами водной экосистемы, обобщенных в форме масс-балансовой модели, составить прогноз биологической продуктивности озер Ладожское, Онежское, Байкал и сопоставить результаты прогноза с данными натурных наблюдений, т. е. произвести верификацию модели.

МАТЕРИАЛЫ И МЕТОДЫ

Географические координаты озер, их морфометрические, гидрологические и гидрохимические свойства указаны в табл. 1. По запасу воды оз. Байкал превышает Ладожское почти в 30 раз, Онежское — в 80. Однако из-за очень продолжительного пребывания воды в оз. Байкал (~377 лет) ее объем, вытекающий из озера (61,4 км³/год), несколько меньше объема воды, сбрасываемого Ладожским озером (71,8 км³/год), и только в три раза больше по сравнению с Онежским. Удельный водосбор Онежского озера в три раза меньше, чем у двух других озер, поэтому вклад атмосферных осадков в приходную часть водного баланса Онежского озера выше, чем в Ладоге и Байкале (25 % против 13 %).

Климат в районах Ладожского и Онежского озер характеризуется как умеренно прохладный с избыточной увлажненностью, типичной для гумидной зоны. Климат в бассейне оз. Байкал близок к морскому и отлича-

ется большой продолжительностью солнечного сияния. Зимой из-за исключительно высокой прозрачности байкальского льда солнечные лучи беспрепятственно проникают в воду, что создает условия для подледного цветения воды и почти круглогодичной вегетации.


Продуцирование органического вещества (ОВ) фотосинтезирующими организмами в озерах зависит от многих природных факторов, среди которых следует выделить ключевые – биогенные элементы (в частности, фосфор), световые условия (светопроницаемость воды) и длительность вегетационного сезона, обусловленную географической широтой. Поступление в водоем ОВ (в том числе гуминовых соединений, обеспечивающих цветность воды) с притоками зависит от площади водосборного бассейна и морфометрии котловины [3]. ОВ разного генезиса через иерархическую систему связей между биотическими и абиотическими факторами определяет биомассу и продукцию редуцентов и консументов (включая рыб), относящихся к разным трофическим уровням.

Природные условия сформировали экосистемы великих озер с высоким качеством воды, однако в связи с интенсификацией человеческой деятельности в них стали наблюдаться признаки эвтрофирования [10, 12–14].

Блок-схема модели биотических потоков в озерах и воздействующих на них факторов представлена на рис. 1, модельный алгоритм, созданный на базе программного пакета Stella, опубликован ранее [15–18]. Модель предназначена для прогнозирования средней биомассы и годовой продукции первичных продуцентов, редуцентов и консументов разного порядка. Входные (независимые) абиотические параметры модели: географическая широта (Lat), средняя и максимальная глубины ($D_{\rm mean}$ и $D_{\rm max}$), содержание общего фосфора (TP), цветность воды, обусловленная присутствием растворенных окрашенных аллохтонных веществ (Pt), и длительность вегетационного сезона (GS). Пределы варьирования TP и Pt в рассматриваемых озерах указаны в табл. 1.

Цветность воды в Байкале крайне низкая и не может быть измерена инструментально, поэтому ее рассчитывали по формуле Pt = 3,6 PO, где PO - перманганатная окисляемость, которая составляет 1-2 мг O_2 /л [19], 3,6 - соотношение Pt/PO, установленное по [20]. Следовательно, значения Pt для Байкала находятся в границах 3,6 - 7,2 град. цветности (табл. 1).

Из-за отсутствия открытых данных по общему фосфору в Байкале, значения ТР были реконструированы с помощью обсуждаемой модели с учетом, что концентрация хлорофилла (Chl) в Байкале составляет 0,5–1,5 мкг/л [21]. Применив известную зависимость Chl от ТР [22], находим, что содержание ТР варьирует в пределах 3–7 мкг/л (табл. 1). Низкое содержание ТР хорошо согласуются с низкими значениями Рt.

Рис. 1. Блок-схема модели для прогнозирования биотического потока энергии в озерных экосистемах: FY — вылов рыб человеком, животными и птицами, при отсутствии вылова — естественная смертность рыб; R + F — потери энергии животными при дыхании и с неусвоенной пищей; R — потери энергии растениями и бактериями при дыхании.

Входные биотические параметры модели: ассимиляционное число для хлорофилла «а» (DAN); константа скорости утилизации аллохтонного РОВ бактериопланктоном (K_t); скорости оборота биомасс (V) ключевых групп гидробионтов, известные как Р/В-коэффициенты; эффективность использования потребленной энергии на рост организмов (E) — аналог коэффициентов K_1 ; коэффициенты распределения энергии пищи (DC) между потребителями. Принято, что среднее за вегетационный сезон DAN для Ладожского озера равно 40 [23], для Онежского — 20 [24], для Байкала — 50 мг С/мг хлорофилла за сутки [21]. Для Онежского и Ладожского озер

Таблица 1. Общая характеристика великих озер России по [4-11]

Параметры	Ладожское озеро	Онежское озеро	Байкал
Географическая широта, °с. ш.	60,6	61,5	51,9
Долгота, °в. д.	31,5	35,75	126,6
Высота над уровнем моря, м	5,1	33	456
Площадь зеркала, км²	17 870	9720	31 722
Средняя глубина, м	47	30	730
Максимальная глубина, м	230	127	1620
Удельный водосбор	14,5	5,82	18
Модуль стока, $\Lambda/(C \cdot \kappa m^2)$	8,8	10,5	3,5
Время пребывания воды в озере,	11,7	15,6	377
годы			
Содержание общего фосфора в воде, мкг/л	20 (15–25)	10 (7–13)	5 (3–7)
Перманганатная окисляемость воды, мг О/л	8,0-8,3 (6,9-9,7)	6,5 (5,6–6,9)	1,5 (1,0-2,0)
Цветность воды, град. цветности	30 (25–35)	22 (20–25)	5 (3–7)
Длительность вегетационного сезона, день	185	179	300

Таблица 2. Входные биотические параметры модели по [29]

Трофическое звено	Скорость оборота биомассы, сут-1		Эффективность использования потребленной энергии на рост		
Фитопланктон	Vphp	0,30	Ephp	0,90	
Макрофиты	Vmac	0,014	_	_	
Эпифиты	Vepi	0,15	_	_	
Микрофитобентос	Vphb	0,075	_	_	
Бактериопланктон	Vbcp	0,4	Ebcp	0,33	
Бактериобентос	Vbcb	0,4	Ebcb	0,33	
Нехищный зоопланктон	Vhzo	0,08	Ehzo	0,16	
Хищный зоопланктон	Vpzo	0,06	Epzo	0,32	
Зообентос	Vzbe	0,015	Ezbe	0,16	
Планктоноядные рыбы	Vplf	0,0025	Eplf	0,08	
Бентосоядные рыбы	Vbef	0,002	Ebef	0,08	
Хищные рыбы	Vpsf	0,0016	Epsf	0,16	

Примечание: прочерк – отсутствие данных.

Водное хозяйство России № 1, 2017 г.

 K_t было принято равным 0,0025 сут $^{-1}$ [25–28], для глубоководного и холодноводного оз. Байкал — 0,0005 сут $^{-1}$ [8]. Средние значения V, E и DC установлены путем калибровки модели по литературным данным (табл. 2, 3).

Длительность вегетационного сезона (GS) в озерах Европейской части России определяли по уравнению [29]:

$$GS = -0.058 \text{ Lat}^2 + 0.549 \text{ Lat} + 365.$$

Значения GS для Ладожского и Онежского озер, рассчитанные по этой формуле, указаны в табл. 1. Для оз. Байкал, где фотосинтез протекает и в зимнее время, благодаря исключительной прозрачности ледового покрова, GS \sim 300 дней [30].

Таблица 3. Коэффициенты распределения (DC) продукции макрофитов, эпифитов, микрофитобентоса, нехищного зоопланктона, планктоноядных и бентосоядных рыб между потребителями по [15]

Трофические цепи	Коэффициенты распределения		
	Troop profits paor page 1		
Макрофиты:			
бактериобентос	DCmac_bcb	0,3	
зообентос	DCmac_zbe	0,5	
донные отложения	1 – DCmac_bcb – DCmac_zbe	0,2	
Эпифиты:			
бактериобентос	DCepi_bcb	0,4	
зообентос	1 – DCepi_bcb	0,6	
Микрофитобентос:			
бактериобентос	DCphb_bcb	0,4	
зообентос	1 – DCphb_bcb	0,6	
Нехищный зоопланктон:			
хищный зоопланктон	DChzo_pzo	0,6	
планктоноядные рыбы	1 – DChzo_pzo	0,4	
Планктоноядные рыбы:			
хищные рыбы	DCplf_psf	0,5	
вылов*	1 – DCplf_psf	0,5	
Бентосоядные рыбы:			
хищные рыбы	DCbef_psf	0,5	
ВЫЛОВ [*]	1 – DCbef_psf	0,5	

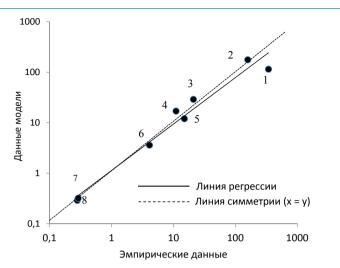
Примечание: * — вылов рыбы человеком, животными и птицами, при отсутствии вылова — естественная смертность рыб.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исходя из значений TP, Pt, DAN и GS, чистая продукция фитопланктона в Ладожском озере составляет в среднем 630 ккал/(м² · год). Фитопланктон – основной продуцент органического вещества, на долю макрофитов, эпифитов и микрофитобентоса приходится около 5 % суммарной первичной продукции. Модель предсказывает, что продукция бактериопланктона ~ 300 , нехищного зоопланктона ~ 90 , хищного ~ 17 , планктоноядных рыб ~ 4 ,1, хищных рыб $\sim 0,37$, сообщества рыб в целом $\sim 2,7$ ккал/(м² · год). Продукция бактерий составляет 45 % суммарной первичной продукции, которая фактически равна продукции фитопланктона; продукция зоопланктона — 7,8 %; рыбного сообщества только 0,40 % (табл. 4).

Таблица 4. Биомасса (В), продукция (Р), скорость оборота биомассы (Р/В) и отношение продукции к суммарной первичной продукции (Р/РР) для организмов разных трофических групп в Ладожском озере (по результатам анализа модели)

Трофическое звено	Биомасса (В), ккал/м²	I -///		P/PP, %
Фитопланктон	9,2–13	509–737	56	93-95
Макрофиты	1,9-2,6	4,9-6,7	2,6	0,63-1,2
Эпифиты	0,028-0,039	0,78-1,1	28	0,10-0,20
Микрофитобентос	2,3–2,6	32–36	14	4,6-5,8
Первичные продуценты	_	549–779	-	100
Бактериопланктон	3,4-4,8	250–356	74	46
Бактериобентос	0,067-0,072	5,0-5,4	74	0,69-0,91
Нехищный зоопланктон	4,8-6,9	72–103	15	13
Хищный зоопланктон	1,2-1,8	14–20	11	2,5
Зообентос	1,8-2,0	5,1–5,6	2,8	0,72-0,92
Планктоноядные рыбы	7,3–10	3,4-4,9	0,46	0,62
Бентосоядные рыбы	1,1–1,2	0,40-0,45	0,37	0,058-0,074
Хищные рыбы	1,0-1,4	0,30-0,42	0,3	0,055
Рыбное сообщество	_	2,2-3,1	-	0,4


Примечание: входные биотические и абиотические параметры модели как в табл. 1, 2 и 3.

Для Онежского озера значения продукционных показателей в 3-4 раза ниже. Продукция фитопланктона ~ 177 ккал/(м²·год), что составляет 85 % суммарной первичной продукции. Продукция бактериопланктона ~ 110 , нехищного зоопланктона ~ 30 , хищного $\sim 5,5$, планктоноядных рыб $\sim 1,5$, хищных рыб $\sim 0,13$, сообщества рыб в целом $\sim 1,0$ ккал/(м²·год). Отношения продукций консументов разного порядка к суммарной первичной продукции в Онеге практически не отличаются от таковых в Ладожском озере, однако доля участия редуцентов заметно выше (табл. 5). Результаты модели для Онежского озера хорошо согласуются с опубликованными данными натурных наблюдений [8, 11, 31–34] (рис. 2).

Таблица 5. Биомасса (В), продукция (Р), скорость оборота биомассы (Р/В) и отношение продукции к суммарной первичной продукции (Р/РР) для организмов разных трофических групп в Онежском озере (по результатам анализа модели)

Трофическое звено	Биомасса (В), ккал/м ²	Продукция (Р), ккал/м² за сезон	Р/В за сезон	P/PP, %
Фитопланктон	2,4-4,0	130-216	54	82-88
Макрофиты	4,1-5,6	10-14	2,5	4,2-8,8
Эпифиты	0,061-0,084	1,6-2,2	27	0,67–1,4
Микрофитобентос	1,0-1,3	13–18	13	7,3-8,3
Первичные продуценты	_	159–246	_	100
Бактериопланктон	1,4–1,9	100–135	72	55-63
Бактериобентос	0,048-0,050	3,4-3,6	72	1,5-2,1
Нехищный зоопланктон	1,7–2,4	24–35	14	14–15
Хищный зоопланктон	0,43-0,62	4,6-6,7	11	2,7–2,9
Зообентос	1,3–1,4	3,4-3,7	2,7	1,5–2,1
Планктоноядные рыбы	2,5–3,7	1,1–1,6	0,45	0,67-0,72
Бентосоядные рыбы	0,75-0,81	0,27-0,29	0,36	0,12-0,17
Хищные рыбы	0,39-0,54	0,11-0,16	0,29	0,063-0,071
Рыбное сообщество	_	0,80-1,1	-	0,46-0,51

Примечание: входные биотические и абиотические параметры модели как в табл. 1, 2 и 3.

Рис. 2. Сравнение эмпирических данных для Онежского озера с результатами модели: 1 – продукция бактериопланктона; 2 – фитопланктона; 3 – нехищного зоопланктона; 4 – зоопланктона в целом; 5 – макрофитов; 6 – зообентоса; 7 – бентосоядных рыб; 8 – вылов рыбы, ккал/(м 2 ·год).

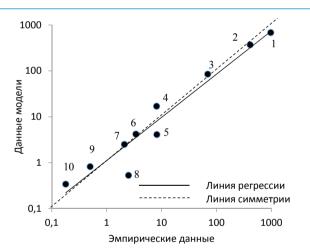
Продукция гидробионтов в Байкале, рассчитанная на единицу площади водной поверхности, очень близка к таковой в Ладожском озере. Как и в Ладожском озере, доминирующим продуцентом ОВ является фитопланктон (табл. 6). Эффективность трансформации первичной продукции в продукцию ее потребителей такого же порядка, что и в двух других озерах. Результаты модели для оз. Байкал не противоречат опубликованным данным натурных наблюдений [5, 35–39] (рис. 3).

Для всех трех озер продукция бактериопланктона составляет в среднем ~ 47 %, продукция зоопланктона ~ 7.9 %, продукция рыб ~ 0.41 % суммарной первичной продукции. Такого рода отношения нередко используют для оценки эффективности переноса энергии в трофической цепи [40-42]. В связи с этим следует заметить, что важную и, нередко, доминирующую роль в биотическом потоке энергии в озерах играет ОВ, поступающее с водосборной площади, поэтому величины продукций гидробионтов, отнесенные к автотрофной продукции ОВ, получаются в разной степени завышенными. Модель же позволяет разделить автохтонную и аллохтонную составляющие энергетического потока. Вычленив из общего потока только автохтонную часть продукций бактериопланктона, зоопланктона и рыб, находим, что во всех трех озерах она составляет в среднем 19; 5,2 и 0,3 % суммарной первичной продукции, т. е. в 1,5-2,5 раза меньше «видимой» эффективности трансформации автотрофной продукции.

Таблица 6. Биомасса (В), продукция (Р), скорость оборота биомассы (Р/В) и отношение продукции к суммарной первичной продукции (Р/РР) для организмов разных трофических групп в оз. Байкал (по результатам анализа модели)

Трофическое звено	Биомасса (В), ккал/м²	Продукция (Р), ккал/м² за сезон	Р/В за сезон	P/PP, %
Фитопланктон	5,6-9,4	500-846	90	99–100
Макрофиты	0,26-0,46	1,1-2,0	4,2	0,13-0,40
Эпифиты	0,0039-0,0072	0,18-0,32	45	0,021-0,064
Микрофитобентос	0,12-0,13	2,8	23	0,33-0,56
Первичные продуценты	_	505-850	_	100
Бактериопланктон	1,6-3,2	190-380	120	38-45
Бактериобентос	0,0041-0,0051	0,50-0,63	120	0,059-0,12
Нехищный зоопланктон	2,6-4,8	62–114	24	12–13
Хищный зоопланктон	0,66-1,2	12–22	18	2,4-2,6
Зообентос	0,11-0,13	0,51-0,60	4,5	0,060-0,12
Планктоноядные рыбы	3,9–7,2	2,9-5,4	0,75	0,58-0,64
Бентосоядные рыбы	0,069-0,082	0,041-0,048	0,6	0,0048-0,0095
Хищные рыбы	0,50-0,91	0,24-0,44	0,48	0,047-0,051
Рыбное сообщество	_	1,7–3,2	-	0,34-0,37

Примечание: входные биотические и абиотические параметры модели как в табл. 1, 2 и 3.


Анализ модели показывает, что ассимиляция ОВ бактериопланктоном в оз. Байкал составляет ~ 875 , в Λ адожском озере ~ 920 , в Онежском ~ 350 ккал/(м²-год). При этом в Байкале около 50 % энергии поступает в бактериальное звено из аллохтонного ОВ и столько же из ОВ, синтезируемого фитопланктоном. В Λ адожском и Онежском озерах вклад аллохтонного ОВ в обеспечение энергией бактериопланктона выше, соответственно 60 и 70 %.

Бактериопланктон, утилизируя аллохтонное ОВ, является дополнительным источником энергии для зоопланктона, который, в свою очередь, служит пищевым объектом для планктоноядных рыб. Следовательно, для прогнозирования общей биологической продуктивности и продукции рыбного сообщества следует учитывать продукцию не только автотрофного планктона, но и той части гетеротрофного бактериопланктона, которая специализируется на утилизации поступающего в водоем извне ОВ. Продукция «первопищи» (термин, введенный Ю.И. Сорокиным [43], означаю-

щий продукцию фитопланктона в сумме с продукцией бактериопланктона за счет ассимиляции им аллохтонного POB) составляет в Байкале по данным модели ~ 837 , в Λ адоге ~ 807 , в Ohere ~ 257 ккал/(м²-год).

Несмотря на сходство трофических статусов Байкала и Ладожского озер по продукции гидробионтов на единицу площади, концентрация жизни в Байкале существенно ниже, чем в Ладоге. Показатели продуктивности в единице объема воды, свидетельствующие о ее качестве, для оз. Байкал следующие: Chl \sim 0,82 мкг/л, биомасса фитопланктона \sim 0,62 мг/л, продукция фитопланктона на «оптимальной» глубине (Chl·DAN) \sim 41 мкг С/(л·сут). Для Ладожского озера эти же показатели существенно выше, среднюю позицию занимает Онежское озеро (табл. 7).

Концентрационные показатели свидетельствуют о высоком качестве воды в оз. Байкал, ему почти не уступает Онежское озеро. После ряда природоохранных мероприятий, выполненных на водосборе и акватории [7, 10], качество воды в Ладожском озере можно характеризовать как удовлетворительное.

Рис. 3. Сопоставление эмпирических данных для оз. Байкал с результатами модели: 1 – продукция фитопланктона; 2 – бактериопланктона; 3 – нехищного зоопланктона; 4 – хищного зоопланктона; 5 – фитобентоса (макрофитов, эпифитов и микрофитобентоса); 6 – планктоноядных рыб; 7 – сообщества рыб в целом; 8 – зообентоса; 9 – вылов рыбы; 10 – продукция хищных рыб, ккал/(м²-год).

Главным фактором, определяющим площадь литоральной зоны и, следовательно, вклад литоральных сообществ (макрофитов, эпифитов, фитобентоса, зообентоса и бентосоядных рыб) в общую биологическую продуктивность озер, является форма их котловины. По этому признаку

Байкал — водоем каньонного типа, его литоральная зона занимает лишь малую часть акватории: 1, 4 % — согласно модели, 7 % — по натурным наблюдениям [44]. Из-за малой площади литоральной зоны — местообитания фито- и зообентоса, являющихся источниками корма для бентосоядных рыб, — продукция последних ничтожно мала.

По форме котловины Ладожское и Онежское озера ближе к водоемам равнинного типа. Их литоральная зона занимает соответственно 17 % и 29 % площади акваторий. Если в Байкале продукция зообентоса составляет лишь 0,08 % суммарной первичной продукции, то в Ладоге и Онеге это соотношение на порядок величин выше (0,8–1,7 %).

Таблица 7. Пределы варьирования продукционно-гидробиологических параметров озер по результатам моделирования

Параметры	Ладожское озеро	Онежское озеро	Байкал
Продукция «первопищи», ккал/(м²·год)	658-946	204-308	590-1056
Валовая продукция фитопланктона, ккал/(m^2 ·год)	637–921	162–270	556–939
Деструкция, ккал/(м²·год)	823–1176	299-420	605–1163
Валовая продукция /деструкция	0,77	0,54-0,64	0,81-0,92
Продукция первопищи/деструкция	0,8	0,68-0,73	0,91-0,98
Площадь зарастания макрофитами, %	0,78-1,3	2,1-2,8	0,16-0,28
Площадь литорали, %	15–19	26-32	1,1–2,0
Допустимый вылов рыбы, кг/га	7,3–10	2,7–3,8	5,8-10
Биомасса фитопланктона, мг/л*	1,8-3,5	0,34-0,75	0,32-0,95
Содержание хлорофилла, мкг/л*	3,4-6,5	1,3-2,8	0,42-1,3
Хлорофилл/биомасса, %	0,19	0,38	0,13
Прозрачность воды, м	1,9–2,5	2,7–3,6	5–9

Примечание: * – биомасса фитопланктона и содержание хлорофилла в эвфотной зоне озер.

Согласно модели, отношение продукции зообентоса к продукции придонных водорослей в анализируемых озерах \sim 12,5 %, отношение продукции бентосоядных рыб к продукции зообентоса \sim 8 %.

Результаты анализа модели и натурные наблюдения показывают, что по концентрации жизни (биомассе и суточной продукции гидробионтов в единице объема воды) оз. Байкал — олиготрофный водоем. Однако благодаря почти круглогодичной вегетации годовая продукция планктонных орга-

низмов на единицу площади характеризует Байкал как водоем мезотрофного класса. На этом основании Г.Г. Винберг [45] придавал Байкалу статус вторично-олиготрофного водоема. По концентрации жизни и интегральным продукционным показателям Ладожское озеро — типично мезотрофный, Онежское озеро — олиготрофный водоемы.

Модель прогнозирует, что допустимый тотальный вылов рыбы в Ладожском озере ~ 8 кг/га (по [7, 10] только ~ 3 кг/га), в Онежском ~ 3 кг/га, что согласуется с официальными статистическими данными [32]. По опубликованным данным в Байкале вылавливается ~ 2,5 кг/га рыбы в год [5]. Изымаются, преимущественно, виды, образующие промысловые косяки и живущие в прибрежных зонах (омуль, хариус, сиг, осетр и др.). Точный учет любительского лова в Байкале не проводится, но по количеству лодок, автомашин и опросным данным сделан вывод, что рыбаки-любители вылавливают столько же рыбы, сколько зарегистрированные рыболовецкие артели [5]. Таким образом, получается, что фактический вылов приближается к 5 кг/га. Модель же просчитывает допустимый общий вылов до 8 кг/га.

Биотический баланс в Байкале слабо отрицательный, отношение валовой продукции фитопланктона к деструкции $OB \sim 0.85$, отношение продукции «первопищи» к деструкции ~ 0.94 . В Ладожском озере отрицательный баланс OB более выражен, чем в Байкале, еще сильнее он выражен в OH Ском озере (табл. 7).

ЗАКЛЮЧЕНИЕ

Озера Ладожское, Онежское и Байкал – одни из самых изученных водоемов мира. Для двух первых создан целый комплекс гидродинамических и гидробиологических моделей так называемого «традиционного» типа [46]. Все эти модели – редукционистского толка, в разной степени приближенные к оригиналам [47–50]. Представленная в данной статье модель отличается холистическим подходом, она универсальна и поэтому предназначена для исследования озерных экосистем в целом. Такой подход оправдан с точки зрения продукционной гидробиологии, когда объектами исследования являются не конкретные виды, а группы функционально родственных организмов, представляющие разные трофические уровни. Из множества внешних факторов в модели задействованы только ключевые и максимально независимые один от другого входные параметры.

Результаты проверки разработанной модели по эмпирическим данным для великих озер России показали, что она обладает достаточно высокой прогностической точностью и пригодна для составления биотических балансов водных экосистем. Представленная в статье модель может быть использована для оперативного прогноза трофического состояния водных экосистем и, что важно, для взаимопроверки надежности эмпири-

ческих и предсказанных моделью данных. Модель постоянно совершенствуется и уточняется в деталях, но уже сегодня становится ясно, что с учетом специфики региональных условий она может стать хорошим инструментом реконструкции недостающих данных и экспертной оценки состояния экосистем.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алимов А.Ф., Богатов В.В., Голубков С.М.* Продукционная гидробиология. СПб.: Наука, 2013. 342 с.
- 2. Винберг Г.Г. Особенности экосистем пресноводных водоемов. Изв. АН СССР. Серия биологич.1975. № 1. С. 83-93.
- 3. *Россолимо* Λ . Λ . Основы типизации озер и лимнологического районирования // Накопление веществ в озерах. М.: Наука, 1964. С. 5–46.
- 4. Гидрология и гидрохимия. Режим доступа: www.baikal-center. ru
- 5. Информационный сайт о Байкале. Режим доступа: www.ozerobaikal.info.
- 6. *Китаев С.П.* Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: КарНЦ РАН, 2007. 395 с.
- 7. Ладога/под ред. В.А. Румянцева и С.А. Кондратьева. СПб: ИО РАН, 2013. 568 с.
- 8. Онежское озеро. Экологические проблемы / под ред. Филатова Н.Н. Петрозаводск: КарНЦ РАН, 1999. 259 с.
- 9. Поздняков Д.В., Коросов А.А., Петрова Н.А., Петтерссон Л.Х., Грассл X. Исследования «гистерезисного» характера возвращения Ладожского озера из мезотрофного состояния // Исследование Земли из космоса. 2009. № 1. С. 1–15.
- 10. *Румянцев В.А., Кудерский Л.А.* Ладожское озеро: общая характеристика, экологическое состояние // Общество. Среда. Развитие (Terra Humana). 2010. № 1. С. 171–182.
- 11. Теканова Е.В. Первичная продукция Онежского озера в современных условиях: автореф. дисс. ... канд. биол. наук. СПб, 2004. 23 с.
- 12. Ладожское озеро. Прошлое, настоящее, будущее / под ред. В.А. Румянцева. СПБ: Наука, 2002. 432 с.
- 13. *Тимакова Т.М., Сабылина А. В.,. Полякова Т.Н, Сярки М.Т., Теканова Е.В., Чекрыжева Т.А.* Современное состояние экосистемы Онежского озера и тенденция ее изменения за последние десятилетия // Тр. Карельского научного центра РАН. 2011. № 4. С. 42–49.
- 14. *Томберг И.В., Сакирко М.В., Онищук Н.А., Тимошкин О.А.* Антропогенное эвтрофирование литорали оз. Байкал // Озерные экосистемы: биологические процессы, антропогенная трансформация, качество воды. Минск: БГУ, 2016. *С.* 110–111.
- 15. *Бульон В.В.* Моделирование потоков энергии в озерных экосистемах как инструмент гидробиологических исследований // Водные ресурсы. 2005. Т. 32. № 3. С. 361–370.
- 16. *Бульон В.В., Сиротский С.Е.* Биологическая продуктивность Богучанского водохранилища: моделирование и прогноз // Известия РАН. 2015. № 4. С. 431–440.

- 17. Гидроэкологический мониторинг зоны влияния Бурейского гидроузла / под ред. С.Е. Сиротского. Хабаровск: ИВЭП ДВО РАН, 2007. 273 с.
- 18. Динамика биотического разнообразия и биоресурсов континентальных водоемов / под ред. А.Ф. Алимова и С.М. Голубкова. СПб: Наука, 2012. 369 с.
- 19. *Мещерякова А.И.* Первичная продукция Байкала // Круговорот вещества и энергии в озерных водоемах. Новосибирск: Наука, 1975. С. 20–27.
- 20. *Скопинцев Б.А., Бакулина А.Г.* Органическое вещество в водах Рыбинского водохранилища в 1964 г. // Продуцирование и круговорот органического вещества во внутренних водоемах. М.-А.: Наука, 1966. С. 3–32.
- 21. *Минеева Н.М., Щур Л.А., Бондаренко Н.А.* Функционирование фитопланктона крупных пресноводных систем при разной обеспеченности ресурсами // Гидробиол. журнал. 2012. Т. 48. № 3. С. 21–33.
- 22. Dillon, Rigler. The phosphorus-chlorophyll relationship in lakes // Limnol. Oceanogr. 1974. Vol. 19. No 5. P. 767–773.
- 23. *Летанская Г.И.* Структурно-функциональные показатели фитопланктона Ладожского озера в современных условиях: автореф. дис. ... канд. биол. наук. СПб, 2002. 26 с.
- 24. Экосистема Онежского озера и тенденции ее изменения / под ред. 3. С. Кауфмана. Λ .: Наука, 1990. 264 с.
- 25. *Bano N., Moran M.A., Hodson R.E.* Bacterial utilization of dissolved humic substances from a freshwater swamp //Aquat. Microb. Ecol. 1997. Vol. 12. No 3. P. 233–238.
- 26. Berggren M., Laudon H., Jansson M. Bacterial utilization of imported organic material in three small nested humic lakes. Verh. Internat. Verein. Limnol. 2010. Vol. 30. No 9. P. 1393–1396.
- 27. *Bussmann I.* Bacterial utilization of humic substances from the Arctic Ocean. Aquat. Microb. Ecol. 1999. Vol. 19. No 6. P. 37–45.
- 28. *Tulonen T.* Role of allochthonous and autochthonous dissolved organic matter (DOM) as a carbon source for bacterioplankton in boreal humic lakes. Helsinki: University, 2004. 32 p.
- 29. *Häkanson L., Boulion V.V.* The lake foodweb modelling predation and abiotic/biotic interactions. Leiden: Backhuys Publishers, 2002. 344 p.
- 30. Флора и растительность озера Байкал. Режим доступа: www.baikal-center.ru.
- 31. Биоресурсы Онежского озера / под ред. В.И. Кохарева и А.А. Лукина. Петрозаводск: КарНЦ РАН, 2008. 272 с.
- 32. Калинкина И.М., Сярки М.Т., Теканова Е.В., Чекрыжева Т.А., Тимакова Т.М., Полякова Т.Н., Рябинкина А.В. Особенности формирования кормовой базы рыб Онежского озера // Органическое вещество и биогенные элементы во внутренних водоемах и морских водах. Петрозаводск: КНЦ РАН, 2012. С. 252–256.
- 33. *Распопов И.М.* Высшая водная растительность литоральной зоны Онежского озера // Λ иторальная зона Онежского озера. Λ .: Наука, 1975. С. 103–123.
- 34. *Филатов Н.Н.,. Кухарев В.И., Регеранд Т.И., Лифшиц В.Х.* Водные ресурсы Европейского севера России: итоги и перспективы исследований. Петрозаводск: КарНЦ РАН, 2006. 538 с.

- 35. *Вотинцев К.К.* Биоэнергетическая трансформация и баланс органических веществ в пелагиали Байкала // Круговорот вещества и энергии в озерных водоемах. Новосибирск: Наука, 1975. С. 48–54.
- 36. *Вотинцев К.К., Поповская Г.И.* О круговороте органического вещества в озере Байкал // Круговорот вещества и энергии в озерах и водохранилищах. Лиственичное на Байкале. ЛИН СО АН СССР, 1973. С. 75–77.
- 37. *Максимов В.В., Щеминина Е.В.* Микробиологическая характеристика открытых вод Байкала по данным общей численности микроорганизмов // Journal of Siberian Federal University. Biology. 2009. Т. 3. № 2. С. 263–270.
- 38. Микроорганизмы Байкала. Режим доступа: www.irkipedia.ru.
- 39. *Москаленко Б.К.* Итоги изучения биологической продуктивности Байкала // Продукционно-биологические исследования экосистем пресных вод. Минск: БГУ, 1973. С. 19–32.
- 41. *Куликова Т.П., Кустовлянкина Н.Б., Сярки М.Т.* Зоопланктон как компонент экосистемы Онежского озера. Петрозаводск: КНЦ РАН, 1997. 112 с.
- 42. Экологическая система Нарочанских озер / под ред. Винберга Г.Г. Минск: Университет, 1985. 303 с.
- 43. *Сорокин Ю.И*. Первичная продукция морей и океанов // Общая экология. Биоценология. Гидробиология. Т. 1. М.: Наука, 1973. С. 7–46.
- 44. *Демин А.И.* Структура ихтиоценоза литорали северо-западной части озера Байкал // Самарская Лука. 2009. Т. 18. № 2. С. 161–167.
- 45. *Винберг Г.Г.* Первичная продукция водоемов. Минск: Изд-во АН БССР, 1960. 29 с.
- 46. *Меншуткин В.В., Руховец Л.А., Филатов Н.Н.* Моделирование экосистем пресноводных озер (обзор). 2. Модели экосистем пресноводных озер // Водные ресурсы. 2014. Т. 41. № 1. С. 24–38
- 47. *Меншуткин В.В., Воробьева О.Н.* Модель экосистемы Ладожского озера // Современное состояние экосистемы Ладожского озера. Л.: Наука, 1987. С. 187–200.
- 48. *Astrakhantsev G.P., Egorova N.B., Menshutkin V.V.* Mathematical model for the ecosystem response of Lake Ladoga to phosphorus loading // Hydrobiologia. 1996. Vol. 322. P. 153–157.
- 49. *Rukhovets L.A., Astrakhantsev G.P., Menshutkin V.V.* Development of Lake Ladoga Ecosystem Models: Modelling of the Phytoplankton Succession in the Eutrophication Process // J. Ecol. Modelling. 2003. Vol. 165. No 1. P. 49–77.
- 50. *Rukhovets L., Filatov N.* Ladoga and Onego Great European Lakes: Observation and Modelling. Chichester: Springer-Praxis, 2010. 302 p.

Сведения об авторе:

Бульон Виктор Валентинович, д-р биол. наук, профессор, ФГБУ «Зоологический институт Российской академии наук» (ЗИН РАН). Россия, 199034, Санкт-Петербург, Университетская наб., 1; e-mail: vboulion@mail.ru.